skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jäkle, Frieder"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Doping of polycyclic aromatic hydrocarbons (PAHs) with boron and/or nitrogen is emerging as a powerful tool to tailor the electronic structure and photophysical properties. AsN‐doped analogues of anthracene,N,N‐dihydrophenazines play important roles as redox mediators, battery materials, luminophores, and photoredox catalysts. Although benzannulation has been used successfully as a structural constraint to control the excited state properties, fusion of the N‐aryl groups to the phenazine backbone has rarely been explored. Herein, we report the first examples of dihydrophenazines, in which the N‐aryl groups are fused to the phenazine backbone via B←N Lewis pair formation. This results in structural rigidification, locking the molecules in a bent conformation, while also modulating the electronic structure through molecular polarization. B─N fusion inBNPz1−BNPz3induces a quinoid resonance structure with significant C─N(py) double bond character and reduces the antiaromatic character of the central pyrazine ring. Borylation also lowers the HOMO/LUMO (highest occupied/lowest unoccupied molecular orbital) energies and engenders bathochromic shifts in the emission. Further rigidification in the solid state gives rise to enhanced emission quantum yields, consistent with aggregation‐induced emission enhancement (AIEE) observed upon water addition to solutions in tetrahydrofuran (THF). The demonstrated structural control and fine‐tuning of optoelectronic properties are of great significance to potential applications as emissive materials and in photocatalysis. 
    more » « less
  2. Tridentate ligands that incorporate pyridyl rather than pyrazolyl groups are emerging as an attractive class of “scorpionate”-type ligands with enhanced electron donation, increased stability, and divergent geometry at the metal centre relative to tris(pyrazolyl)borates originally introduced by Trofimenko. Following our initial reports, the tris(pyridyl)borate (Tpyb) ligand architecture has been adopted by several research groups in pursuit of functional metal complexes that offer new opportunities in catalysis and materials science. While earlier work had been focused on symmetric octahedral complexes, ML2, which are advantageous as highly robust building blocks in materials sciences, recently introduced new ligand designs provide access to heteroleptic metal complexes with vacant sites that lend themselves to applications in catalysis. Signficant progress has also been made in the post-complexation functionalization of these ligands via electrophilic and nucleophilic substitution reactions at the boron centres, opening up new routes for integration of Tpyb complexes with diverse functional materials while also raising interesting mechanistic questions. 
    more » « less
  3. The successful polymerization of the Dewar isomer of an azaborinine heterocycle is reported. Controlled ring-opening metathesis polymerization was accomplished with Grubbs and Hoveya−Grubbs second generation catalysts (G2, HG2), as well as a Z-selective Ru catalyst (HGM2001). The structure of the polymers containing 4-membered B−N heterocycles was verified by GPC and multinuclear and 2D NMR. Differences in stereochemistry of polymers derived from G2/HG2 versus the Z-selective catalyst HGM2001 were substantiated by 2D NOESY, FT-IR, and Raman analyses. The incorporation of B−N heterocycles into these polymer structures is promising as a route to functional polymers that contain polar side groups. 
    more » « less
  4. Abstract Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B−N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2and acetylene, and soft polymer networks that serve as recyclable, self‐healing, and responsive thermosets, gels and elastomeric materials. 
    more » « less
  5. Although a wide variety of boron-based “scorpionate” ligands have been implemented, a modular route that offers facile access to different substitution patterns at boron has yet to be developed. Here, we demonstrate new reactivity patterns at the bridgehead positions of a ruthenium tris(pyrid-2-yl)borate complex that allow for facile tuning of steric and electronic properties. 
    more » « less
  6. null (Ed.)